A generalization of multiple zeta values. Part 2: Multiple sums
نویسندگان
چکیده
Sums of the form $\sum_{q \leq N_1 < \cdots N_m n}{a_{(m);N_m}\cdots a_{(2);N_2}a_{(1);N_1}}$ date back to sixteen century when Vi\`ete illustrated that relation linking roots and coefficients a polynomial had this form. In more recent years, such sums have become increasingly used with diversity applications. paper, we develop formulae help manipulating (which will refer as multiple sums). We variation express in terms lower order sums. Additionally, derive set partition identities use prove reduction theorem expresses combination simple (non-recurrent) present variety applications including concerning polynomials MZVs well generalization binomial theorem. Finally, establish connection between type called recurrent By exploiting connection, provide additional for odd even partitions.
منابع مشابه
Central Binomial Sums, Multiple Clausen Values, and Zeta Values
We find and prove relationships between Riemann zeta values and central binomial sums. We also investigate alternating binomial sums (also called Apéry sums). The study of non-alternating sums leads to an investigation of different types of sums which we call multiple Clausen values. The study of alternating sums leads to a tower of experimental results involving polylogarithms in the golden ra...
متن کاملA generalization of Ohno’s relation for multiple zeta values
In the present paper, we prove that certain parametrized multiple series satisfy the same relation as Ohno’s relation for multiple zeta values. This result gives us a generalization of Ohno’s relation for multiple zeta values. By virtue of this generalization, we obtain a certain equivalence between the above relation among the parametrized multiple series and a subfamily of the relation. As ap...
متن کاملOn Mordell-tornheim Sums and Multiple Zeta Values
RÉSUMÉ. Nous prouvons que toute somme de Mordell-Tornheim avec des arguments entiers positifs peut s’écrire comme une combinaison linéaire rationnelle de valeurs prises par des fonctions multi-zêta ayant le même poids et la même profondeur. Selon un résultat de Tsumura, il s’ensuit que toute somme de Mordell-Tornheim ayant un poids et une profondeur de parité différente peut s’exprimer comme un...
متن کاملAspectsof Multiple Zeta Values
Multiple zeta values (MZVs, also called Euler sums or multiple harmonic series) are nested generalizations of the classical Riemann zeta function evaluated at integer values. The fact that an integral representation of MZVs obeys a shuue product rule allows the possibility of a combi-natorial approach to them. Using this approach we prove a longstanding conjecture of Don Zagier about MZVs with ...
متن کاملMultiple Zeta Values
for any collection of positive integers s1, s2, . . . , sl. By definition, Lis(1) = ζ(s), s ∈ Z, s1 ≥ 2, s2 ≥ 1, . . . , sl ≥ 1. (4.2) Taking, as before for multiple zeta values, Lixs(z) := Lis(z), Li1(z) := 1, (4.3) let us extend action of the map Li : w 7→ Liw(z) by linearity on the graded algebra H (not H, since multi-indices are coded by words in H). Lemma 4.1. Let w ∈ H be an arbitrary non...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Notes on Number Theory and Discrete Mathematics
سال: 2022
ISSN: ['1310-5132', '2367-8275']
DOI: https://doi.org/10.7546/nntdm.2022.28.2.200-233